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Three “KNOW” to win

• Know your model

• Know your data

• Know how your data is used



Agenda

• Conceptual design

• Logical design

• Physical design



Conceptual design



Conceptual model

Involves:

• Entities

• Attributes

• Relationships

Derived from business objects and business 

requirements

Represented in Entity-Relationship (ER) diagram
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Entity and time scale (1)

Infinite life of entities

• Usually represents object or state

• Changes are unpredictable

• Examples: person, employee, country, currency name

• Leads to: 1 record for 1 object



Entity and time scale (2)

Time series

• Always have concrete moments of start and finish

• Usually have multiple, very often adjacent, periods of 

life

• Examples: jobs, sale prices, currency rates

• Need additional attributes: start/end dates

• Lead to: many records for 1 object



Changes aka History

• Do you need to save history?

• Depth of history:

• Only last

• Within time frame, i.e. financial year

• All

• Amount of history tracking:

• Events (logging)

• Only important data

• All attributes



Slow changing dimensions (1)

• Originally designed for data warehouses

• Include types from 0 to 6

https://en.wikipedia.org/wiki/Slowly_changing_dimen

sion

https://en.wikipedia.org/wiki/Slowly_changing_dimension


Slow changing dimensions (2)

Type 0 – retain original

Attribute will never change

Example: birthday



Slow changing dimensions (3)

Type 1 – overwrite

Before:

After:

Id Supplier_Code Supplier_Name Supplier_State

123 ABC Acme Supply Co CA

Id Supplier_Code Supplier_Name Supplier_State

123 ABC Acme Supply Co IL



Slow changing dimensions (4)

Type 2 – add new row

Needs additional columns for version number and/or 

start-end dates

Id Supplier_Code Supplier_Name Supplier_State StartDate EndDate

123 ABC Acme Supply Co CA 01.01.2015 14.01.2018

124 ABC Acme Supply Co IL 15.01.2018



Slow changing dimensions (5)

Type 3 – add new attribute

Remembers only current and previous values

Id Supplier_Code Supplier_Name
Original_Supp

lier_State
Effective_Date

Current_Supp

lier_State

123 ABC
Acme Supply 

Co
CA 15.01.2018 IL



Slow changing dimensions (6)

Type 4 – add history table

Base table

History table

Id Supplier_Code Supplier_Name Supplier_State

123 ABC Acme & Johnson Supply Co IL

Id Supplier_Code Supplier_Name Supplier_State Create_Date

1027 ABC Acme Supply Co CA 01.01.2015

1159 ABC
Acme & Johnson 

Supply Co
IL 15.01.2018



Change as Business Fact

• Some changes mean business facts/events

• Can be used in reporting

• Can be a basis for data warehouse



Delete

• Revert

• Rollback erroneous operation

• Hard delete

• Record is physically removed from table

• Soft delete

• Record is only marked as deleted

• Needs additional attribute



Archiving

• Confused with zip archives or backups

• Implies physical movement of data to a dedicated 

storage

• Application should be capable to lookup archived 

data

• Should support reverse operation



Logical design



Logical model

Gives detailed description for:

• Entities as tables

• Attributes as columns/fields

• Relationships as foreign keys

Usually normalized to at least 3rd normal form



Entity or Attribute dilemma

• Key question: Does attribute can have multiple 

values?

• Usually leads to create an entity and relationship

• Difficult situations:

• Is lastname an entity or attribute?

• Phone number?



One or many values

Person lastname

• Could change after marriage

• Likely to be different in national and international 

passport

• Dual citizenship



Additional entities

Many-to-many relationship

• Implemented via junction table

Multi-valued attribute

• Prefer to use separate entity (table)



Too many attributes

Possible implementation:

• Normalized table

• Name/Value pairs table

• Properties as XML/JSON or binary serialized 

structure 

• SPARSE columns



Generalization (1)
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Physical design



Physical model

• Table

• Columns

• Primary/foreign keys

• Constraints

• Indexes and indexed views



Primary key

• Candidates: int, guid

• Avoid string columns and composite keys

• Physical implementation

• Clustered key (by default)

• Unique not null index

• Key generators: identity, sequence, NEWID()



Time intervals

• Range - start/end date

• Effective date

Id Job_Title StartDate EndDate

58 Junior developer 10.02.2016 18.06.2017

422 Mid-developer 19.06.2017 null

Id Job_Title EffectiveDate

58 Junior developer 10.02.2016

422 Mid-developer 19.06.2017

957 Not working 15.01.2018



Storage options

• Database page types

• Data row

• Row overflow

• LOB

• Different filegroups

• Indexes and indexed views

• Sparse columns

• Filestream



Saving changes

• Format: string, table, XML/JSON

• Where

• One place (suits for logging)

• Many places (best for per table history)

• How:

• Stored procedure, database trigger

• Replication, Change Data Capture

• Application



Denormalization (1)

Goal – improve performance by:

• Reducing memory operations

• Reducing CPU calculations

Minimize:

• Joins (Employee name as Person name + DivisionName
+ First phone number)

• Aggregates (Order total price/total weight)

• String group concatenation (all phone numbers as one 
string)



Denormalization (2)
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Denormalization (3)

Reducing memory operations

• Storage overhead in additional column for data from 

another table or aggregates

• Must be updated on changes (by application or 

trigger)

Reducing CPU calculations

• Less joins and aggregations => less CPU load

• Persisted calculated fields



Partitioning

Vertical 

• Can query smaller table

• Needs join for querying all columns

Horizontal (partition table)

• Enterprise edition, Standard edition since SQL Server 2016 
SP1

• Physical data movement on partition split/merge

Partition view 

• Can be updatable



Questions?



Thanks!


