Andrey Zavadskiy

Database Modeling In Practice

About me

» Solutions architect, SQL & .NET developer

» Interests: SQL Server, Entity Framework, Backend,
MVC

@ http://andreyzavadskiy.com

B https.//www.facebook.com/andrey.k.zavadskiy
B @AndreyZavadskiy

[https://www.linkedin.com/in/zavadskiy D

http://andreyzavadskiy.com/
https://www.facebook.com/andrey.k.zavadskiy

Huge thanks to our amazing sponsors!

Global SQLSaturday Partner

B Microsoft 3% PASS
Gold Sponsor

Clupst ===

Silver Sponsor

&' dbWatch

DATABASE CONTROL

1 VALINOR

Bronze Sponsor

Urrotogic

inspire

LA RS B BRI R B

BDATASITE

EXPERDA /A Azure

Three "KNOW" to win

e Know your model
* Know your data
* Know how your data is used

<D

Agenda

» Conceptual design
* Logical design
* Physical design

<D

onceptual design

Conceptual model

Involves:

* Entities

« Attributes

» Relationships

Derived from business objects and business
requirements

Represented in Entity-Relationship (ER) diagram
<2

ER diagram

FirstName

LastName

—O% Personld

StartDate

Name

B Id H+— H Id H— B Id

Employeeld
Divisionld

StartDate

B Id H—

<D

Entity and time scale (1)

Infinite life of entities
» Usually represents object or state
» Changes are unpredictable
« Examples: person, employee, country, currency name
 Leads to: 1 record for 1 object

<D

Entity and time scale (2)

Time series

 Always have concrete moments of start and finish

 Usually have multiple, very often adjacent, periods of
life

« Examples: jobs, sale prices, currency rates

* Need additional attributes: start/end dates

 Lead to: many records for 1 object

<D

Changes aka History

* Do you need to save history?

* Depth of history:
* Only last
« Within time frame, i.e. financial year
« All

» Amount of history tracking:
* Events (logging)
* Only important data
 All attributes

<D

Slow changing dimensions (1)

* Originally designed for data warehouses
* Include types from 0 to 6

https.//en.wikipedia.org/wiki/Slowly changing dimen
sion

<D

https://en.wikipedia.org/wiki/Slowly_changing_dimension

Slow changing dimensions (2)

Type 0 — retain original
Attribute will never change
Example: birthday

<D

Slow changing dimensions (3)

Type 1 — overwrite

Before:
Id Supplier_Code Supplier_Name Supplier_State
123 ABC Acme Supply Co CA
After:
Id Supplier_Code Supplier_Name Supplier_State
123 ABC Acme Supply Co IL

<2

Slow changing dimensions (4)

Type 2 —add new row

Needs addi

start-end dates

tional columns for version number and/or

Id

Supplier Code

Supplier Name

Supplier State

StartDate

EndDate

123

ABC

Acme Supply Co

CA

01.01.2015

14.01.2018

124

ABC

Acme Supply Co

IL

15.01.2018

<2

Slow changing dimensions (5)

Type 3 — add new attribute

Remembers only current and previous values

Id |Supplier_Code|Supplier_Name Or:;_qelpasl{ai:pp Effective_Date Cu“r;ernécgstuepp
123| ABC Acmeci”pp'y CA 15.01.2018 IL

<2

Slow changing dimensions (6)

Type 4 — add history table

Base table

Id

Supplier Code

Supplier Name Supplier State

123

ABC

Acme & Johnson Supply Co

IL

History table

Id Supplier Code Supplier Name Supplier State | Create Date
1027 ABC Acme Supply Co CA 01.01.2015
1159 ABC e IL 15.01.2018

Supply Co

<2

Change as Business Fact

» Some changes mean business facts/events
» Can be used in reporting
* Can be a basis for data warehouse

<D

Delete

* Revert
 Rollback erroneous operation

» Hard delete
» Record is physically removed from table

 Soft delete
» Record is only marked as deleted

 Needs additional attribute

<D

Archiving

» Confused with zip archives or backups

 Implies physical movement of data to a dedicated
storage

» Application should be capable to lookup archived
data

» Should support reverse operation

<D

Logical design

Logical model

Gives detailed description for:
 Entities as tables
* Attributes as columns/fields
 Relationships as foreign keys

Usually normalized to at least 3™ normal form

<D

Entity or Attribute dilemma

» Key question: Does attribute can have multiple
values?

» Usually leads to create an entity and relationship
» Difficult situations:

* [s lastname an entity or attribute?
* Phone number?

<D

One or many values

Person lasthname

Could change after marriage

Likely to be different in national and international
passport

Dual citizenship

<D

Additional entities

Many-to-many relationship
« Implemented via junction table

Multi-valued attribute
 Prefer to use separate entity (table)

<D

Too many attributes

Possible implementation:
* Normalized table
 Name/Value pairs table

* Properties as XML/JSON or binary serialized
structure

« SPARSE columns

<D

Generalization (1)

Id

FirstName

LastName

Id

Id

—O%

Personlid

Text

Personlid

StartDate

B Id
—Of Employeeld
Text

<D

Generalization (2)

Id

FirstName

LastName

Id

|d

!

.

Discriminator
Entityld

Text

Personld

StartDate

<D

Physical design

Physical model

* Table

* Columns

* Primary/foreign keys

» Constraints

* Indexes and indexed views

<D

Primary key

» Candidates: int, guid
 Avoid string columns and composite keys

* Physical implementation
 Clustered key (by default)

* Unique not nul
* Key generators:

Index

identity, sequence, NEWID()

<D

Time intervals

* Range - start/end date

Id Job Title StartDate EndDate
58 | Junior developer | 10.02.2016 | 18.06.2017
422 | Mid-developer | 19.06.2017 null

o Effective date

Id Job _Title EffectiveDate

58 Junior developer 10.02.2016
422 Mid-developer 19.06.2017
957 Not working 15.01.2018

<2

Storage options

» Database page types
* Data row

« Row overflow
« LOB

» Different filegroups

» Indexes and indexed views
» Sparse columns

* Filestream

<D

Saving changes

* Format: string, table, XML/JSON

e Where

* One place (suits for logging)
* Many places (best for per table history)

* How:
« Stored procedure, database trigger
* Replication, Change Data Capture
* Application

<D

Denormalization (1)

Goal — improve performance by:
* Reducing memory operations
» Reducing CPU calculations
Minimize:
* Joins (Employee name as Person name + DivisionName
+ First phone number)
» Aggregates (Order total price/total weight)
 String group concatenation (all phone numbers as one

string) S

Denormalization (2)

Employee name: Bob Marley, Q&A, +1(555)111-2233

B Id L—LI Id !d BE Id
FirstName Personld Of Employeeld

LastName StartDate —O% Divisionld
Employee StartDate
Name

B |d

Personid 00— Name

Number < >

Denormalization (3)

Reducing memory operations

 Storage overhead in additional column for data from
another table or aggregates

* Must be updated on changes (by application or
trigger)
Reducing CPU calculations
* Less joins and aggregations => less CPU load
» Persisted calculated fields

<D

Partitioning

Vertical

* Can query smaller table

* Needs join for querying all columns
Horizontal (partition table)

 Enterprise edition, Standard edition since SQL Server 2016
SP1

* Physical data movement on partition split/merge
Partition view

* Can be updatable
<2

Questions?

Thanks!

