
Database Modeling In Practice

Andrey Zavadskiy



About me

• Solutions architect, SQL & .NET developer

• Interests: SQL Server, Entity Framework, Backend, 

MVC

http://andreyzavadskiy.com

https://www.facebook.com/andrey.k.zavadskiy

@AndreyZavadskiy

https://www.linkedin.com/in/zavadskiy

http://andreyzavadskiy.com/
https://www.facebook.com/andrey.k.zavadskiy


Huge thanks to our amazing sponsors!



Three “KNOW” to win

• Know your model

• Know your data

• Know how your data is used



Agenda

• Conceptual design

• Logical design

• Physical design



Conceptual design



Conceptual model

Involves:

• Entities

• Attributes

• Relationships

Derived from business objects and business 

requirements

Represented in Entity-Relationship (ER) diagram



ER diagram

Person Employee

Division

Job

IdPK

FirstName

LastName

IdPK

PersonId

IdPK

Name

IdPK

EmployeeId

DivisionId

StartDate

StartDate



Entity and time scale (1)

Infinite life of entities

• Usually represents object or state

• Changes are unpredictable

• Examples: person, employee, country, currency name

• Leads to: 1 record for 1 object



Entity and time scale (2)

Time series

• Always have concrete moments of start and finish

• Usually have multiple, very often adjacent, periods of 

life

• Examples: jobs, sale prices, currency rates

• Need additional attributes: start/end dates

• Lead to: many records for 1 object



Changes aka History

• Do you need to save history?

• Depth of history:

• Only last

• Within time frame, i.e. financial year

• All

• Amount of history tracking:

• Events (logging)

• Only important data

• All attributes



Slow changing dimensions (1)

• Originally designed for data warehouses

• Include types from 0 to 6

https://en.wikipedia.org/wiki/Slowly_changing_dimen

sion

https://en.wikipedia.org/wiki/Slowly_changing_dimension


Slow changing dimensions (2)

Type 0 – retain original

Attribute will never change

Example: birthday



Slow changing dimensions (3)

Type 1 – overwrite

Before:

After:

Id Supplier_Code Supplier_Name Supplier_State

123 ABC Acme Supply Co CA

Id Supplier_Code Supplier_Name Supplier_State

123 ABC Acme Supply Co IL



Slow changing dimensions (4)

Type 2 – add new row

Needs additional columns for version number and/or 

start-end dates

Id Supplier_Code Supplier_Name Supplier_State StartDate EndDate

123 ABC Acme Supply Co CA 01.01.2015 14.01.2018

124 ABC Acme Supply Co IL 15.01.2018



Slow changing dimensions (5)

Type 3 – add new attribute

Remembers only current and previous values

Id Supplier_Code Supplier_Name
Original_Supp

lier_State
Effective_Date

Current_Supp

lier_State

123 ABC
Acme Supply 

Co
CA 15.01.2018 IL



Slow changing dimensions (6)

Type 4 – add history table

Base table

History table

Id Supplier_Code Supplier_Name Supplier_State

123 ABC Acme & Johnson Supply Co IL

Id Supplier_Code Supplier_Name Supplier_State Create_Date

1027 ABC Acme Supply Co CA 01.01.2015

1159 ABC
Acme & Johnson 

Supply Co
IL 15.01.2018



Change as Business Fact

• Some changes mean business facts/events

• Can be used in reporting

• Can be a basis for data warehouse



Delete

• Revert

• Rollback erroneous operation

• Hard delete

• Record is physically removed from table

• Soft delete

• Record is only marked as deleted

• Needs additional attribute



Archiving

• Confused with zip archives or backups

• Implies physical movement of data to a dedicated 

storage

• Application should be capable to lookup archived 

data

• Should support reverse operation



Logical design



Logical model

Gives detailed description for:

• Entities as tables

• Attributes as columns/fields

• Relationships as foreign keys

Usually normalized to at least 3rd normal form



Entity or Attribute dilemma

• Key question: Does attribute can have multiple 

values?

• Usually leads to create an entity and relationship

• Difficult situations:

• Is lastname an entity or attribute?

• Phone number?



One or many values

Person lastname

• Could change after marriage

• Likely to be different in national and international 

passport

• Dual citizenship



Additional entities

Many-to-many relationship

• Implemented via junction table

Multi-valued attribute

• Prefer to use separate entity (table)



Too many attributes

Possible implementation:

• Normalized table

• Name/Value pairs table

• Properties as XML/JSON or binary serialized 

structure 

• SPARSE columns



Generalization (1)
Person PersonDoc

Employee EmployeeDoc

IdPK

FirstName

LastName

IdPK

PersonId

Text

IdPK

PersonId

StartDate

IdPK

EmployeeId

Text



Generalization (2)
Person Documnet

Employee

IdPK

FirstName

LastName

IdPK

Discriminator

Text

IdPK

PersonId

StartDate

EntityId



Physical design



Physical model

• Table

• Columns

• Primary/foreign keys

• Constraints

• Indexes and indexed views



Primary key

• Candidates: int, guid

• Avoid string columns and composite keys

• Physical implementation

• Clustered key (by default)

• Unique not null index

• Key generators: identity, sequence, NEWID()



Time intervals

• Range - start/end date

• Effective date

Id Job_Title StartDate EndDate

58 Junior developer 10.02.2016 18.06.2017

422 Mid-developer 19.06.2017 null

Id Job_Title EffectiveDate

58 Junior developer 10.02.2016

422 Mid-developer 19.06.2017

957 Not working 15.01.2018



Storage options

• Database page types

• Data row

• Row overflow

• LOB

• Different filegroups

• Indexes and indexed views

• Sparse columns

• Filestream



Saving changes

• Format: string, table, XML/JSON

• Where

• One place (suits for logging)

• Many places (best for per table history)

• How:

• Stored procedure, database trigger

• Replication, Change Data Capture

• Application



Denormalization (1)

Goal – improve performance by:

• Reducing memory operations

• Reducing CPU calculations

Minimize:

• Joins (Employee name as Person name + DivisionName
+ First phone number)

• Aggregates (Order total price/total weight)

• String group concatenation (all phone numbers as one 
string)



Denormalization (2)

Employee name: Bob Marley, Q&A, +1(555)111-2233
Person Employee

Division

Job

Phone

IdPK

FirstName

LastName

IdPK

PersonId

IdPK

Name

IdPK

EmployeeId

DivisionId

StartDate

StartDate

IdPK

PersonId

Number

Employee
Name



Denormalization (3)

Reducing memory operations

• Storage overhead in additional column for data from 

another table or aggregates

• Must be updated on changes (by application or 

trigger)

Reducing CPU calculations

• Less joins and aggregations => less CPU load

• Persisted calculated fields



Partitioning

Vertical 

• Can query smaller table

• Needs join for querying all columns

Horizontal (partition table)

• Enterprise edition, Standard edition since SQL Server 2016 
SP1

• Physical data movement on partition split/merge

Partition view 

• Can be updatable



Questions?



Thanks!


