
Transaction Log

Internals and Troubleshooting

September 3, 2015

Berlin, Germany

Andrey Zavadskiy, Krasnodar, Russia

MCSE/MCSD/MCT

About me

 Solutions architect, SQL & .NET

developer

 20 years in IT industry

 Worked with SQL Server since

7.0 back in 2001

 Developed in C#, ASP.NET, MVC,

JavaScript, SharePoint

 MCDBA, MCSE, MCSD

 MCT since 2008

 PASS speaker

https://www.facebook.com/
andrey.k.zavadskiy

@AndreyZavadskiy

https://www.linkedin.com/in/
zavadskiy

http://andreyzavadskiy.com

https://www.facebook.com/andrey.k.zavadskiy
https://www.linkedin.com/in/zavadskiy
http://andreyzavadskiy.com/

3

About Krasnodar

Regional center

Was founded in 1793, renamed in 1920

Original name Yekaterinodar – Catherine’s gift

Distances:
 Istanbul 929 km

 Moscow 1196 km

 Warsaw 1541 km

 Copenhagen 2200 km

 Brussels 2640 km

 Paris 2793 km

 Lisbon 3995 km

4

Contents

 Logical and physical architecture

 Transactions and transaction log

 Log file growing and truncation

 VLF fragmentation

 Troubleshooting

 Delayed durability (SQL Server 2014)

5

Transaction Log. What for?

 Supports ACID properties

 Recovery in case of database crash or SQL

Server startup

 Rolling a restored database, file, filegroup, or

page forward to the point of failure

 Supporting transactional replication

 Supporting high availability and disaster

recovery solutions

6

Logical Architecture

 Just a list of log records

 Identified by Log Sequence Number (LSN)

 Log record contains:
 Info about transaction

 Before and after images

 Allocation information, etc.

 Can be viewed by fn_dblog()

00000028 : 00000120 : 0002

VLF number Log block number Log record number

7

Physical Architecture (1)

 8KB file header with metadata

 Consists of Virtual Log Files (VLF)

 VLF has logical sequence number (FSeqNo)

 Minimum 2 VLFs, minimal VLF size = 248KB

 Filled by zero on creation

VLF 1 VLF 2 VLF 3 VLF 4 VLF 5

Active VLF Active VLF
Inactive/

unused VLF
Inactive/

unused VLF
Inactive/

unused VLF

Header

8

Physical Architecture (2)

 Each VLF is splitted into log blocks

 Log block size = from 512B to 60 KB

 Contains log records from multiple transactions

… …Log blocks

Log records…

VLF 1 VLF 2 VLF 3 VLF 4 VLF 5

Active VLF Active VLF
Inactive/

unused VLF
Inactive/

unused VLF
Inactive/

unused VLF

9

Transactions and Transaction Log

 Records all modifications made by each

transaction

 Single transaction produces some log records

 Written to transaction log file

 Implements Write-Ahead Log (WAL) by

default

 Can be changed by Delayed Durability

10

Transaction Commit

 All log records up to the LSN of

LOP_COMMIT_XACT must be written to disk

 Waits for acknowledgement from the

synchronous mirror or Availability Group

server (if applicable)

 Release all locks placed by the transaction

 Acknowledge the commit to user

11

Transaction Log Flush

SQL Server
task

Log cache for
each database

Transaction log file

Up to 128*60 KB buffers 64 bit
32*60 KB buffers 32 bit

Log writer (async)

Write
complete

Commit

LOGBUFFER wait

WRITELOG wait

12

Transaction Log Writes

Always writes sequentially
 Multiple log files doesn’t give any performance benefit

Limits on outstanding I/O:

SQL Server
version

Quantity
64 bit 32 bit

Amount, KB

Prior to
2005SP1

8 8 480

2005SP1 –
2008R2

32 8 480 (2005)
3840 (2008)

2012 and later 112 16 3840

13

Log File Operations

Operation File size Number of VLF Comment

Growing Increasing
(expands a log file
according to
growth
parameters)

Increasing
(calculated by VLF
formula)

Truncation Not changed Not changed Only marks inactive
VLFs as truncated

Shrinking Can be reduced Can be reduced Depends on active
VLFs

14

Log File Growing (1)

• SQL Server allocates so many VLFs as needed

to rollback the longest active transaction

• New VLFs are filled by zero

VLF 1 VLF 2 VLF 3 VLF 4 VLF 5

Active
VLF

Active
VLF

Active
VLF

Active
VLF

Unused
VLF

Start of
Logical Log

MinLSN

Last checkpoint

End of
Logical Log

15

Log File Growing (1)

• SQL Server allocates so many VLFs as needed

to rollback the longest active transaction

• New VLFs are filled by zero

VLF 1 VLF 2 VLF 3 VLF 4 VLF 5

Active
VLF

Active
VLF

Active
VLF

Active
VLF

Active
VLF

Start of
Logical Log

MinLSN

Last checkpoint

End of
Logical Log

Unused
VLF

Unused
VLF

VLF 6 VLF 7

16

VLF Size Algorithm

 Used on log creation for all versions

 Used on log growth for SQL Server 2012 and

earlier

 Depends on chunk size to be added

Chunk size Number of VLF added

Size <= 1 MB Complicated, playing with first 248 KB VLFs

1Mb < Size <= 64 Mb 4 VLFs

64 Mb < Size <= 1Gb 8 VLFs

Size > 1G 16 VLFs

17

New VLF Size Algorithm

 Used only on log growth since SQL Server

2014

 Depends on chunk size to be added:
 If the chunk size less than 1/8 of the current log size,

create 1 VLF equal to the growth size

 Otherwise, create VLFs according to the old algorithm

18

Log File Growing (2)

 Log file has initial and maximum sizes

 Maximum size can be fixed or unlimited*

 Log file can be expanded manually or

automatically

 If log autogrowth occurs:
 New VLFs will be added and zero-initialized

 It leads to a wait in transaction processing

19

Inactive Log Record

Log record becomes inactive when:

 The transaction that this log record is part of has

committed

 The database pages changed by this transaction/log

record have been written to disk by checkpoint

 The log record is not needed for a backup (full,

differential, or log)

 The log record is not needed for any feature that

reads the log (Database mirroring, AlwaysOn Group,

Transactional replication, Change Data Capture)

20

Log Truncation (1)

VLF is truncated when:
 It has NO active log records

 After checkpoint in simple/pseudo-full recovery model

 After log backup in full or bulk-logged recovery model

VLF 1 VLF 2 VLF 3 VLF 4 VLF 5

Active
VLF

Active
VLF

Active
VLF

Active
VLF

Unused
VLF

Start of
Logical Log

MinLSN

Last checkpoint

End of
Logical Log

21

Log Truncation (2)

 VLF is marked as truncated

 VLF is NOT filled with zero

VLF 1 VLF 2 VLF 3 VLF 4 VLF 5

Inactive
VLF

Inactive
VLF

Active
VLF

Active
VLF

Unused
VLF

Start of
Logical Log

MinLSN

Last checkpoint

End of
Logical Log

22

Circular Nature of the Log

• Inactive VLF can be overwritten

• Parity bits are flipped after roll-over

VLF 1 VLF 2 VLF 3 VLF 4 VLF 5

Active
VLF

Inactive
VLF

Active
VLF

Active
VLF

Active
VLF

Start of
Logical Log

MinLSN

Last checkpoint

End of
Logical Log

23

Shrinking

 Automatic
 Database AUTO_SHRINK option

 Manual
 DBCC SHRINKFILE

 Shrink unused VLFs/space from the end of the log file

 Could shrink maximum to the first 2 VLFs

24

Transaction Log Issues

 Excessive log growing and error 9002

 Log shrinking

 VLF fragmentation

25

Excessive Log Growing

There are many reasons
 Look at log_reuse_wait_desc in sys.databases

 See section “Factors That Can Delay Log Truncation” in

https://msdn.microsoft.com/en-us/ms190925.aspx

How to correct:

• Consider using SIMPLE recovery model

Reason Action

LOG_BACKUP Take a log backup frequently

ACTIVE_BACKUP_OR_RESTORE Re-evaluate the backup strategy/plan

ACTIVE_TRANSACTION Kill erroneous or poorly written transaction

REPLICATION Check transactional replication

https://msdn.microsoft.com/en-us/ms190925.aspx

26

Monitoring Transaction Log Space

 Performance Monitor
 Log File(s) Size (KB)

 Log File(s) Used Size (KB)

 Percent Log Used

 Log Growths

 DBCC SQLPERF(LOGSPACE)

 sys.dm_db_log_space_usage (since SQL

Server 2012)

27

Error 9002

If log can’t auto-grow:
 You will receive error 9002

 Rolls back uncommitted transactions

 Stops activity (writing new transactions to log file)

How to correct:
 Check the reason, then take a corresponding action

 Extend log file (if applicable)

 Add an additional log file

28

DEMO

 Excessive log growing and error 9002

 Deleting additional log files

29

Log shrinking

Steps:

 Run DBCC LOGINFO to estimate the number of

VLFs and last active VLF

 Truncate log

 Make log backup for Full or Bulk-logged recovery model

 Make CHECKPOINT in Simple recovery model

 Wait for log roll-over and truncate again

 Run DBCC SHRINKFILE

30

VLF Fragmentation

 VLF are added during log growth
 Improper growth value leads to a big number of small or tiny

VLFs

 Truncated VLFs can be in any place of

transaction log
 Leads to fragmentation in VLF sequence

 Causes problems in log activity, backups or

readers

 If number of VLF is hundreds or thousands,

think about VLF defragmentation

31

Removing VLF Fragmentation

 Manually shrink file

 Repeat shrinking to reach minimum file size

 Change transaction log file size and/or

autogrowth
 VLF size should not be bigger than 500 MB

 Perform manual growing to get optimal log size

32

DEMO

 Shrinking log file

 Removing VLF fragmentation

33

Delayed Durability in SQL Server 2014

 Commit transactions BEFORE log flush

 Defined at database level

 Benefits:

 Reducing waits

 Increasing throughput by larger flush chunks

 Reducing contention for log I/O

 Disadvantages:

 Risk of data loss

34

Transaction Log Flush in Delayed Durability

SQL Server
task

Log cache for
each database

Transaction log file

Log writer (async)

Write
complete

Commit

35

DEMO

Speeding up transactions with Delayed

Durability

36

Summary

 Place transaction log on separate fast

physical disk

 Keep just one log file

 Monitor log size and performance

 Prevent log filling up

 Manage the number of VLFs

 Think about upgrade to the latest SQL Server

versions

Questions?

Thank you for attending!

